Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639993

RESUMO

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

2.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617221

RESUMO

SARS-CoV-2 main protease, M pro , is responsible for the processing of the viral polyproteins into individual proteins, including the protease itself. M pro is a key target of anti-COVID-19 therapeutics such as nirmatrelvir (the active component of Paxlovid). Resistance mutants identified clinically and in viral passage assays contain a combination of active site mutations (e.g. E166V, E166A, L167F), which reduce inhibitor binding and enzymatic activity, and non-active site mutations (e.g. P252L, T21I, L50F), which restore the fitness of viral replication. Although the mechanism of resistance for the active site mutations is apparent, the role of the non-active site mutations in fitness rescue remains elusive. In this study, we use the model system of a M pro triple mutant (L50F/E166A/L167F) that confers not only nirmatrelvir drug resistance but also a similar fitness of replication compared to the wild-type both in vitro and in vivo. By comparing peptide and full-length M pro protein as substrates, we demonstrate that the binding of M pro substrate involves more than residues in the active site. In particular, L50F and other non-active site mutations can enhance the M pro dimer-dimer interactions and help place the nsp5-6 substrate at the enzyme catalytic center. The structural and enzymatic activity data of M pro L50F, L50F/E166A/L167F, and others underscore the importance of considering the whole substrate protein in studying M pro and substrate interactions, and offers important insights into M pro function, resistance development, and inhibitor design.

3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328037

RESUMO

Molecular dynamics simulations are used to interrogate the dynamic nature of Staphylococcus aureus Type I signal peptidases, SpsA and SpsB, including the impact of the P29S mutation of SpsB. Fluctuations and plasticity- rigidity characteristics vary among the proteins, particularly in the extracellular domain. Intriguingly, the P29S mutation, which influences susceptibility to arylomycin antibiotics, affect the mechanically coupled motions in SpsB. The integrity of the active site is crucial for catalytic competency, and variations in sampled structural conformations among the proteins are consistent with diverse peptidase capabilities. We also explored the intricate interactions between the proteins and the model S. aureus membrane. It was observed that certain membrane-inserted residues in the loop around residue 50 (50s) and C-terminal loops, beyond the transmembrane domain, give rise to direct interactions with lipids in the bilayer membrane. Our findings are discussed in the context of functional knowledge about these signal peptidases, offering additional understanding of dynamic aspects relevant to some cellular processes with potential implications for drug targeting strategies.

4.
Nat Commun ; 15(1): 1136, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326316

RESUMO

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.


Assuntos
Inteligência Artificial , Lipídeos de Membrana , Membrana Celular , Simulação de Dinâmica Molecular , Aprendizado de Máquina
5.
Subcell Biochem ; 106: 441-459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159237

RESUMO

The cholesterol of the host cell plasma membrane and viral M2 protein plays a crucial role in multiple stages of infection and replication of the influenza A virus. Cholesterol is required for the formation of heterogeneous membrane microdomains (or rafts) in the budozone of the host cell that serves as assembly sites for the viral components. The raft microstructures act as scaffolds for several proteins. Cholesterol may further contribute to the mechanical forces necessary for membrane scission in the last stage of budding and help to maintain the stability of the virus envelope. The M2 protein has been shown to cause membrane scission in model systems by promoting the formation of curved lipid bilayer structures that, in turn, can lead to membrane vesicles budding off or scission intermediates. Membrane remodeling by M2 is intimately linked with cholesterol as it affects local lipid composition, fluidity, and stability of the membrane. Thus, both cholesterol and M2 protein contribute to the efficient and proper release of newly formed influenza viruses from the virus-infected cells.


Assuntos
Vírus da Influenza A , Orthomyxoviridae , Vírus da Influenza A/metabolismo , Proteínas Virais/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Membrana Celular/metabolismo
6.
J Biol Chem ; 299(12): 105438, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944618

RESUMO

The tachykinin receptors neurokinin 1 (NK1R) and neurokinin 2 (NK2R) are G protein-coupled receptors that bind preferentially to the natural peptide ligands substance P and neurokinin A, respectively, and have been targets for drug development. Despite sharing a common C-terminal sequence of Phe-X-Gly-Leu-Met-NH2 that helps direct biological function, the peptide ligands exhibit some degree of cross-reactivity toward each other's non-natural receptor. Here, we investigate the detailed structure-activity relationships of the ligand-bound receptor complexes that underlie both potent activation by the natural ligand and cross-reactivity. We find that the specificity and cross-reactivity of the peptide ligands can be explained by the interactions between the amino acids preceding the FxGLM consensus motif of the bound peptide ligand and two regions of the receptor: the ß-hairpin of the extracellular loop 2 (ECL2) and a N-terminal segment leading into transmembrane helix 1. Positively charged sidechains of the ECL2 (R177 of NK1R and K180 of NK2R) are seen to play a vital role in the interaction. The N-terminal positions 1 to 3 of the peptide ligand are entirely dispensable. Mutated and chimeric receptor and ligand constructs neatly swap around ligand specificity as expected, validating the structure-activity hypotheses presented. These findings will help in developing improved agonists or antagonists for NK1R and NK2R.


Assuntos
Receptores da Neurocinina-1 , Taquicininas , Animais , Humanos , Linhagem Celular , Chlorocebus aethiops , Ligantes , Neurocinina A/metabolismo , Antagonistas dos Receptores de Neurocinina-1 , Receptores da Neurocinina-1/agonistas , Receptores da Neurocinina-1/metabolismo , Substância P , Taquicininas/metabolismo , Receptores da Neurocinina-2/metabolismo
7.
Mol Pharmacol ; 105(1): 54-62, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37907352

RESUMO

G protein-coupled receptors (GPCRs) exhibit a wide range of pharmacological efficacies, yet the molecular mechanisms responsible for the differential efficacies in response to various ligands remain poorly understood. This lack of understanding has hindered the development of a solid foundation for establishing a mathematical model for signaling efficacy. However, recent progress has been made in delineating and quantifying receptor conformational states and associating function with these conformations. This progress has allowed us to construct a mathematical model for GPCR signaling efficacy that goes beyond the traditional ON/OFF binary switch model. In this study, we present a quantitative conformation-based mathematical model for GPCR signaling efficacy using the adenosine A2A receptor (A2AR) as a model system, under the guide of 19F quantitative nuclear magnetic resonance experiments. This model encompasses two signaling states, a fully activated state and a partially activated state, defined as being able to regulate the cognate Gα s nucleotide exchange with respective G protein recognition capacity. By quantifying the population distribution of each state, we can now in turn examine GPCR signaling efficacy. This advance provides a foundation for assessing GPCR signaling efficacy using a conformation-based mathematical model in response to ligand binding. SIGNIFICANCE STATEMENT: Mathematical models to describe signaling efficacy of GPCRs mostly suffer from considering only two states (ON/OFF). However, research indicates that a GPCR possesses multiple active-(like) states that can interact with Gαßγ independently, regulating varied nucleotide exchanges. With the guide of 19F-qNMR, the transitions among these states are quantified as a function of ligand and Gαßγ, serving as a foundation for a novel conformation-based mathematical signaling model.


Assuntos
Nucleotídeos , Receptores Acoplados a Proteínas G , Conformação Proteica , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Modelos Moleculares
8.
J Chem Theory Comput ; 19(18): 6342-6352, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37616238

RESUMO

Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C-H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Simulação de Dinâmica Molecular , Colesterol/química
9.
Protein Sci ; 31(11): e4456, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134696

RESUMO

G protein-coupled receptors (GPCRs) are important drug targets characterized by a canonical seven transmembrane (TM) helix architecture. Recent advances in X-ray crystallography and cryo-EM have resulted in a wealth of GPCR structures that have been used in drug design and formed the basis for mechanistic activation hypotheses. Here, ensemble refinement (ER) of crystallographic structures is applied to explore the impact of binding of agonists and antagonist/inverse agonists to selected structures of cannabinoid receptor 1 (CB1R), ß2 adrenergic receptor (ß2 AR), and A2A adenosine receptor (A2A AR). To assess the conformational flexibility and its role in GPCR activation, hydrogen bond (H-bond) networks are analyzed by calculating and comparing H-bond propensities. Mapping pairwise propensity differences between agonist- and inverse agonist/antagonist-bound structures for CB1R and ß2 AR shows that agonist binding destabilizes H-bonds in the intracellular parts of TM 5-7, forming the G protein binding cavity, while H-bonds of the extracellular segment of TMs surrounding the orthosteric site are conversely stabilized. Certain class A GPCRs, for example, A2A AR, bind an allosteric sodium ion that negatively modulates agonist binding. The impact of sodium-excluding mutants (D522.50 N, S913.39 A) of A2A AR on agonist binding is examined by applying ER analysis to structures of wildtype and the two mutants in complex with a full agonist. While S913.39 A exhibits normal activity, D522.50 N quenches the downstream signaling. The mainchain H-bond pattern of the latter is stabilized in the intracellular part of TM 7 containing the NPxxY motif, indicating that an induced rigidity of the mutation prevents conformational selection of G proteins resulting in receptor inactivation.


Assuntos
Receptores Adrenérgicos beta 2 , Sódio , Conformação Molecular , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Ligação Proteica , Ligação de Hidrogênio , Cristalografia por Raios X , Ligantes
10.
Structure ; 30(10): 1372-1384, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36130592

RESUMO

Advances in X-ray crystallography and cryoelectron microscopy enabled unprecedented insights into the activation processes of G protein-coupled receptors (GPCRs). However, these static receptor structures provide limited information about dynamics and conformational transitions that play pivotal roles in mediating signaling diversity through the multifaceted interactions between ligands, receptors, and transducers. Developing NMR approaches to probe the dynamics of conformational transitions will push the frontier of receptor science toward a more comprehensive understanding of these signaling processes. Although much progress has been made during the last decades, it remains challenging to delineate receptor conformational states and interrogate the functions of the individual states at a quantitative level. Here we cover the progress of 19F NMR applications in GPCR conformational and dynamic studies during the past 20 years. Current challenges and limitations of 19F NMR for studying GPCR dynamics are also discussed, along with experimental strategies that will drive this field forward.


Assuntos
Receptores Acoplados a Proteínas G , Microscopia Crioeletrônica , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Proteica , Receptores Acoplados a Proteínas G/química
11.
Int J Biol Macromol ; 206: 911-916, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318080

RESUMO

Conventional approaches to study ligand-receptor interactions using solution-state NMR often involve laborious sample preparation, isotopic labeling, and receptor reconstitution. Each of these steps remains challenging for membrane proteins such as G protein-coupled receptors (GPCRs). Here we introduce a combinational approach integrating NMR and homogenized membrane nano-discs preparation to characterize the ligand-GPCR interactions. The approach will have a great potential for drug screening as it benefits from minimal receptor preparation, minimizing non-specific binding. In addition, the approach maintains receptor structural heterogeneity essential for functional diversity, making it feasible for probing a more reliable ligand-GPCR interaction that is vital for faithful ligand discovery.


Assuntos
Receptores Acoplados a Proteínas G , Avaliação Pré-Clínica de Medicamentos/métodos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
12.
Sci Rep ; 12(1): 3747, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260627

RESUMO

Proteases play a major role in many vital physiological processes. Trypsin-like serine proteases (TLPs), in particular, are paramount in proteolytic cascade systems such as blood coagulation and complement activation. The structural topology of TLPs is highly conserved, with the trypsin fold comprising two ß-barrels connected by a number of variable surface-exposed loops that provide a surprising capacity for functional diversity and substrate specificity. To expand our understanding of the roles these loops play in substrate and co-factor interactions, we employ a systematic methodology akin to the natural truncations and insertions observed through evolution of TLPs. The approach explores a larger deletion space than classical random or directed mutagenesis. Using FVIIa as a model system, deletions of 1-7 amino acids through the surface exposed 170 loop, a vital allosteric regulator, was introduced. All variants were extensively evaluated by established functional assays and computational loop modelling with Rosetta. The approach revealed detailed structural and functional insights recapitulation and expanding on the main findings in relation to 170 loop functions elucidated over several decades using more cumbersome crystallization and single deletion/mutation methodologies. The larger deletion space was key in capturing the most active variant, which unexpectedly had a six-amino acid truncation. This variant would have remained undiscovered if only 2-3 deletions were considered, supporting the usefulness of the methodology in general protease engineering approaches. Our findings shed further light on the complex role that surface-exposed loops play in TLP function and supports the important role of loop length in the regulation and fine-tunning of enzymatic function throughout evolution.


Assuntos
Fator VIIa , Serina Endopeptidases , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Tripsina/metabolismo
13.
J Am Chem Soc ; 143(34): 13701-13709, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465095

RESUMO

Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions. We find that lipid headgroups sample a wide range of overlapping conformations in both neutral and charged cellular membranes, and that differences in the headgroup chemistry manifest only in probability distributions of conformations. Furthermore, the analysis of 894 protein-bound lipid structures from the Protein Data Bank suggests that lipids can bind to proteins in a wide range of conformations, which are not limited by the headgroup chemistry. We propose that lipids can select a suitable headgroup conformation from the wide range available to them to fit the various binding sites in proteins. The proposed inverse conformational selection model will extend also to lipid binding to targets other than proteins, such as drugs, RNA, and viruses.


Assuntos
Lipídeos/química , Proteínas/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Ligação Proteica , Proteínas/metabolismo
14.
Thromb Haemost ; 121(9): 1122-1137, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34214998

RESUMO

In the life sciences, including hemostasis and thrombosis, methods of structural biology have become indispensable tools for shedding light on underlying mechanisms that govern complex biological processes. Advancements of the relatively young field of computational biology have matured to a point where it is increasingly recognized as trustworthy and useful, in part due to their high space-time resolution that is unparalleled by most experimental techniques to date. In concert with biochemical and biophysical approaches, computational studies have therefore proven time and again in recent years to be key assets in building or suggesting structural models for membrane-bound forms of coagulation factors and their supramolecular complexes on membrane surfaces where they are activated. Such endeavors and the proposed models arising from them are of fundamental importance in describing and understanding the molecular basis of hemostasis under both health and disease conditions. We summarize the body of work done in this important area of research to drive forward both experimental and computational studies toward new discoveries and potential future therapeutic strategies.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Membrana Celular/metabolismo , Biologia Computacional/métodos , Coagulação Sanguínea , Simulação por Computador , Hemostasia , Humanos , Lipídeos de Membrana/química , Modelos Biológicos , Simulação de Dinâmica Molecular , Fosfatidilserinas/química , Domínios Proteicos , Software , Tromboplastina/química , Trombose
15.
Biomolecules ; 11(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917935

RESUMO

The vast majority of coagulation factor VII (FVII), a trypsin-like protease, circulates as the inactive zymogen. Activated FVII (FVIIa) is formed upon proteolytic activation of FVII, where it remains in a zymogen-like state and it is fully activated only when bound to tissue factor (TF). The catalytic domains of trypsin-like proteases adopt strikingly similar structures in their fully active forms. However, the dynamics and structures of the available corresponding zymogens reveal remarkable conformational plasticity of the protease domain prior to activation in many cases. Exactly how ligands and cofactors modulate the conformational dynamics and function of these proteases is not entirely understood. Here, we employ atomistic simulations of FVIIa (and variants hereof, including a TF-independent variant and N-terminally truncated variants) to provide fundamental insights with atomistic resolution into the plasticity-rigidity interplay of the protease domain conformations that appears to govern the functional response to proteolytic and allosteric activation. We argue that these findings are relevant to the FVII zymogen, whose structure has remained elusive despite substantial efforts. Our results shed light on the nature of FVII and demonstrate how conformational dynamics has played a crucial role in the evolutionary adaptation of regulatory mechanisms that were not present in the ancestral trypsin. Exploiting this knowledge could lead to engineering of protease variants for use as next-generation hemostatic therapeutics.


Assuntos
Fator VII/química , Fator VIIa/química , Precursores de Proteínas/química , Regulação Alostérica , Domínio Catalítico , Análise por Conglomerados , Fator VII/metabolismo , Fator VIIa/metabolismo , Humanos , Simulação de Dinâmica Molecular , Análise de Componente Principal , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Tromboplastina/química , Tromboplastina/metabolismo , Tripsina/metabolismo
16.
Bioconjug Chem ; 32(1): 99-105, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33377784

RESUMO

Conformational dynamics and transitions of biologically active molecules are pivotal for understanding the physiological responses they elicit. In the case of receptor activation, there are major implications elucidating disease mechanisms and drug discovery innovation. Yet, incorporation of these factors into drug screening systems remains challenging in part due to the lack of suitable approaches to include them. Here, we present a novel strategy to probe the GPCR domain rotation by utilizing the 19fluorine signal variability of a trifluorinated keto-enol (TFKE) chemical equilibrium. The method takes advantage of the high sensitivity of the TFKE tautomerism toward microenvironmental changes resulting from receptor conformational transitions upon ligand binding. We validated the method using the adenosine A2AR receptor as a model system in which the TFKE was attached to two sites exhibiting opposing motions upon ligand binding, namely, V229C6.31 on transmembrane domain VI (TM6) and A289C7.54 on TM7. Our results demonstrated that the TFKE switch was an excellent reporter for the domain rotation and could be used to study the conformational transition and dynamics of relative domain motions. Although further studies are needed in order to establish a quantitative relationship between the rotational angle and the population distribution of different components in a particular system, the research presented here provides a foundation for its application in studying receptor domain rotation and dynamics, which could be useful in drug screening efforts.


Assuntos
Flúor/química , Sondas Moleculares/química , Receptores Acoplados a Proteínas G/química , Ligantes , Conformação Proteica , Rotação , Estereoisomerismo
17.
Trends Pharmacol Sci ; 42(1): 19-30, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33250272

RESUMO

Although structure-based virtual drug discovery is revolutionizing the conventional high-throughput cell-based screening system, its limitation is obvious, together with other critical challenges. In particular, the resolved static snapshots fail to represent a full free-energy landscape due to homogenization in structural determination processing. The loss of conformational heterogeneity and related functional diversity emphasize the necessity of developing an approach that can fill this space. In this regard, NMR holds undeniable potential. However, outstanding questions regarding the NMR application remain. This review summarizes the limitations of current drug discovery and explores the potential of 19F NMR in establishing a conformation-guided drug screening system, advancing the cell- and structure-based discovery strategy for G protein-coupled receptor (GPCR) biased drug screening.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Ligantes
18.
J Phys Chem B ; 124(31): 6738-6747, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32644803

RESUMO

The influenza virus M2 amphipathic helix (M2AH) alters membrane curvature in a cholesterol-dependent manner, mediating viral membrane scission during influenza virus budding. Here, we have investigated the biophysical effects of cholesterol on the ability of an M2AH peptide to manipulate membrane properties. We see that the ability of the M2AH to interact with membranes and form an α-helix is independent of membrane cholesterol concentration; however, cholesterol affects the angle of the M2AH peptide within the membrane. This change in membrane orientation affects the ability of the M2AH to alter lipid order. In low-cholesterol membranes, the M2AH is inserted near the level of the lipid head groups, increasing lipid order, which may contribute to generation of the membrane curvature. As the cholesterol content increases, the M2AH insertion becomes flatter and slightly deeper in the membrane below the lipid headgroups, where the polar face can continue to interact with the headgroups while the hydrophobic face binds cholesterol. This changed orientation minimizes lipid packing defects and lipid order changes, likely reducing the generation of membrane curvature. Thus, cholesterol regulates M2 membrane scission by precisely modulating M2AH positioning within the membrane. This has implications for the understanding of many of amphipathic-helix-driven cellular budding processes that occur in specific lipid environments.


Assuntos
Orthomyxoviridae , Proteínas da Matriz Viral , Membrana Celular , Colesterol , Bicamadas Lipídicas , Liberação de Vírus
19.
J Phys Chem B ; 124(10): 1881-1891, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32064878

RESUMO

Secretory phospholipases A2 (sPLA2s) are a subclass of enzymes that catalyze the hydrolysis at the sn-2 position of glycerophospholipids, producing free fatty acids and lysophospholipids. In this study, different phospholipids with structural modifications close to the scissile sn-2 ester bond were studied to determine the effect of the structural changes on the formation of the Michaelis-Menten complex and the water entry/exit pathways using molecular dynamics simulations and the computational tracking tool AQUA-DUCT. Structural modifications include methylation, dehydrogenation, and polarization close to the sn-2 scissile bond. We found that all water molecules reaching the active site of sPLA2-IIA pass by the aromatic residues Phe5 and Tyr51 and enter the active site through an active-site cleft. The relative amount of water available for the enzymatic reaction of the different phospholipid-sPLA2 complexes was determined together with the distance between key atoms in the catalytic machinery. The results showed that (Z)-unsaturated phospholipid is a good substrate for sPLA2-IIA. The computational results are in good agreement with previously reported experimental data on the ability of sPLA2-IIA to hydrolyze liposomes made from the different phospholipids, and the results provide new insights into the necessary active-site solvation of the Michaelis-Menten complex and can pave the road for rational design in engineering applications.


Assuntos
Fosfolipases A2 Secretórias , Água , Domínio Catalítico , Hidrólise , Lipossomos , Fosfolipases A2 Secretórias/metabolismo
20.
J Phys Chem B ; 123(43): 9066-9079, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31574222

RESUMO

Phosphatidylserine (PS) is a negatively charged lipid type commonly found in eukaryotic membranes, where it interacts with proteins via nonspecific electrostatic interactions as well as via specific binding. Moreover, in the presence of calcium ions, PS lipids can induce membrane fusion and phase separation. Molecular details of these phenomena remain poorly understood, partly because accurate models to interpret the experimental data have not been available. Here we gather a set of previously published experimental NMR data of C-H bond order parameter magnitudes, |SCH|, for pure PS and mixed PS:PC (phosphatidylcholine) lipid bilayers and augment this data set by measuring the signs of SCH in the PS headgroup using S-DROSS solid-state NMR spectroscopy. The augmented data set is then used to assess the accuracy of the PS headgroup structures in, and the cation binding to, PS-containing membranes in the most commonly used classical molecular dynamics (MD) force fields including CHARMM36, Lipid17, MacRog, Slipids, GROMOS-CKP, Berger, and variants. We show large discrepancies between different force fields and that none of them reproduces the NMR data within experimental accuracy. However, the best MD models can detect the most essential differences between PC and PS headgroup structures. The cation binding affinity is not captured correctly by any of the PS force fields-an observation that is in line with our previous results for PC lipids. Moreover, the simulated response of the PS headgroup to bound ions can differ from experiments even qualitatively. The collected experimental data set and simulation results will pave the way for development of lipid force fields that correctly describe the biologically relevant negatively charged membranes and their interactions with ions. This work is part of the NMRlipids open collaboration project ( nmrlipids.blogspot.fi ).


Assuntos
Cátions/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Cátions/química , Membrana Celular/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...